If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-.33t^2+103t+6279=0
We add all the numbers together, and all the variables
-0.33t^2+103t+6279=0
a = -0.33; b = 103; c = +6279;
Δ = b2-4ac
Δ = 1032-4·(-0.33)·6279
Δ = 18897.28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(103)-\sqrt{18897.28}}{2*-0.33}=\frac{-103-\sqrt{18897.28}}{-0.66} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(103)+\sqrt{18897.28}}{2*-0.33}=\frac{-103+\sqrt{18897.28}}{-0.66} $
| 3+5w=38 | | 6x^2-17x+13=2-x^2-32 | | 5v+13=18 | | 2(4x-15)=3(x+25) | | (x+4=8x-6) | | 29=x/4-14 | | 5(2x-1)=-2(x-2) | | 5x/8+1/4(4+x)=36 | | 5x=x–12 | | 708=4(x+17) | | 129.74=5.7h-2.5 | | 2(5-3x)=6(2x=1) | | -1-x=-2-2x | | 4x-18-3x=4 | | (6x+5)°=(6x-5)° | | 100x^2-120+36=25 | | 12d−3=2 | | (6x-5)°=(6x+5)° | | 7x-19/10=52-x/15 | | 19x-17x=-36 | | 9-c=12 | | -21/4=x-4/5 | | 12÷12n=-48 | | g=331+434 | | h-16=272 | | r=702-164 | | 8=6x+4(x+6) | | 2x+12=(x+20)(x+8) | | f+384=934 | | 12+6x=x-9 | | 6x-10=4x+5=10(x-4) | | 4x+9+1=29 |